FEFCD

Corrugated Packaging

Case study analyses:
Assessing impacts in the supply chain of substituting corrugated cardboard packaging with reusable alternatives

Introduction

The goal of the new Packaging and Packaging Waste Regulation (PPWR) is to make packaging more circular and reduce emissions from the production, use, and end-of-life of packaging.

However, mandatory reuse targets may have unintended consequences.

Corrugated cardboard would be particularly impacted as it is almost exclusively single use.

FEFCO collaborated with Deloitte* to examine the potential impact of replacing corrugated cardboard with reusable packaging.

The result is a study

focusing on logistics aspects including transport and storage, as well as environmental impacts.

The analysis builds

on two case studies related to grouped packaging for biscuits and heavy furniture kits. The analytical model compiles insight from industry interviews and literature data to provide quantitative and qualitative insight.

To conduct the study,

Deloitte developed an analytical circular network design model. The model is based on a stylised version of the packaging supply chain that includes material producers, packaging producers, brand owners, retailers, and reuse or recycling activities to compare the current situation with the hypothetical one in which corrugated is replaced by reusable crates.

[^0]Corrugated Packaging

replacing corrugated cardboard with reusable ALTERNATIVES TO TRANSPORT:

BISCUIT

Case study 1

TRANSPORT

CO_{2} EMISSIONS

STORAGE

SIZES
$\left.\begin{array}{lll} & \begin{array}{l}\text { CORUGAAED } \\ \text { CARDBOARDBOX }\end{array} & \text { REUSABLE } \\ \text { PLASTIC CRATES }\end{array}\right]$

FURNITURE

Case study 2

TRANSPORT

$$
\mathrm{CO}_{2} \mathrm{EMISSIONS}
$$

STORAGE

 increase $\mathbf{+ 3 0} \%$ SIZES

	1 corrugatio		REUSABLE
box Length	1.15 m		1.15 m
Box wioth	0.77 m		0.77 m
- вохнеІІнт	0.60 m	+20\%	0.72 m
box weisht	3.10 kg		11.64 kg

GROUPED PACKAGING FOR BISCUITS

The first case study analyses the potential impacts of a shift from corrugated cardboard to reusable crates for grouped packaging of biscuits.

The set-up assumptions were:

Total demand for cardboard packaging:

This equals
2.2 bilien

The study assumes:

An increase
 efficiency loss
(bigger box) in crates due to standardisation.

for crates (allocated using a time horizon of 4 years) to absorb supply chain abnormalities.

Reusable crate can be (re)used

25
times

Ideal packaging size

Size of the packaging

Figure: Illustration of efficiency loss when packaging has to be highly standardized

WHAT DOES THE SHIFT FROM CORRUGATED CARDBOARD to REUSABLE PLASTIC CRATES LEAD TO？

Impact on transport

The model compares TRANSPORT COSTS and the NUMBER OF TRUCK JOURNEYS required to ship 2.2 billion boxes of biscuits per year．

In the case of CORRUGATED CARDBOARD the operation requires the same economic activity requires

国
 1.2
 billion km
 per year

for a total cost of

（⿴囗十⿱夂口－
1.7
billion km per year for a total cost of

2 ．${ }^{\text {billion }}$ per year f

1． $5 \underset{\text { peryear }}{\text { billion }}$

Figure：kilometres and costs of transport in the selected scenarios for grouped packaging of biscuits

Key elements that drive the 0.5 BILLION KILOMETRE GAP and the 39% COST INCREASE PER YEAR include：
\checkmark Reusable crates are 20\％bigger than corrugated cardboard boxes and require extra truck journeys．
\checkmark The production of corrugated cardboard is close to the biscuit manufacturer．
\checkmark Despite the need for lower quantities，reusable crates need to be produced at sufficient scale to be profitable；meaning an extra 120／200 km compared to the corrugated scenario．
\checkmark Folded reusable crates are 11x thicker than folded corrugated（and even more when you compare with compressed corrugated at end－of－life）．

Impact on emissions

The model shows an

$\uparrow \begin{aligned} & \text { increase } \\ & \text { co } 0_{2} \text { emissions by }\end{aligned} 10 \%$

which corresponds to a

140% increase

(driven by an increase in shipments and kilometers crossed)
and a

$$
\downarrow 5 \% \% \text { iecrease }
$$

(as the carbon footprint of plastic crates is more than $\mathbf{5 x}$ higher than cardboard, reusability results in less units created, and crates are $\mathbf{4 0 \%}$ heavier than cardboard).
$\mathrm{CO}_{2} \mathrm{e}$ emission (Million tonnes $\mathrm{CO}_{2} \mathrm{e} /$ year)
2.0
2.0
1.5
1.0
0.5
0.0

Corrugated cardboard
Packaging production
Transport

Figure: Summary graph on $\mathrm{CO}_{2} \mathrm{e}$ emissions impact for grouped packaging for biscuits

Impact on storage

The shift from corrugated cardboard to reusable plastic crates leads to:

The need for additional storage for reusable packaging is driven by packaging size and thickness.

Plastic crates are on average shipped with

Corrugated Packaging

PACKAGING FOR HEAVY FURNITURE KITS

The second case study analyses the potential impacts of a shift from corrugated cardboard to reusable crates for packaging for heavy furniture kits.

The set-up assumptions were:

Total demand for corrugated cardboard is estimated at:

28 million
0.9\%

252 tonnes
per year being used for furniture packaging.

This relates to

01 million
 furniture

kits that need to be shipped.

The study assumes:

An increase

(bigger box) in crates due to standardisation.
+20\% extra buffer
for crates (allocated using a time horizon of 4 years) to absorb supply chain abnormalities.

Reusable crate can be (re)used

25
times

As with other products, using reusable crates leads to a material loss in space efficiency.

Corrugated cardboard box

The most important difference with the biscuits case study is that the furniture kit goes beyond the retailer level and reaches households.

Reusable plastic cretes

What does the shift from Corrugated cardioard to REUSABLE PLASTIC CRATES LEAD TO?

Impact on transport

The model shows a

in transport kilometres and associated costs in case reusable packaging would be legally imposed.

The additional empty space caused by the lack of customisation to the dimensions of a product and leads to an

extra 0.4 billion kilometers

because the volume available on pallets and in trucks is an important logistics constraint.
in costs from brand owners to retailers and from retailer depots to points of sale.

In addition, reusable crate production is assumed to be farther away from packers for production volume purposes ($\sim 120 \mathrm{~km}$ farther). Similarly, in the return flow, reusing crates leads to more nodes and slightly more kilometers ($\mathbf{2 0} \mathbf{~ k m}$ more from end-consumer back to brand owner).

As a result, reusable crates cross more kilometers than corrugated cardboard, which benefits from its close proximity to packers.

Figure: Summary graph on transport impact for packaging for heavy furniture kits
Source: Deloitte internal resources

These findings mean an extra burden for end customers. The analysis likely portrays an underestimation of the direct and indirect costs of a shift to reusable packaging.

What does the shift from Corrugated cardioard to REUSABLE PLASTIC CRATES LEAD TO?

Impact on emissions

For GHG emissions the
model shows an overall
increase

It is important to note that the
higher weight of the crates,
the need for additional buffer
(allocated over a 4 -year time horizon)
and the weight-based carbon
footprint
mean that the production emissions in a reuse system for furniture kits are only slightly lower.

Impact on storage

For storage costs
the model shows
$\uparrow \begin{gathered}\text { 30\% } \\ \text { increase }\end{gathered}$

Storage (Million pallets/year)

For transport emissions, the model shows an
$\mathrm{CO}_{2} \mathrm{e}$ emission (Million tonnes $\mathrm{CO}_{2} \mathrm{e} /$ year)
1.5
1.5

Corrugated cardboard
0.11

Packaging production
Transport

Figure 12: Summary graph on $\mathrm{CO}_{2} \mathrm{e}$ emissions for packaging for heavy furniture kits

Storage cost (Million $€ / y e a r)$

Figure 13: Summary graph on storage for packaging for packaging for heavy furniture kits

Sensitivity analysis

A sensitivity analysis was performed to demonstrate the robustness of the study.

Case study 1:

THE TRANSPORT KILOMETERS and COSTS

increase by 16\%

even when modifying the key assumptions.

THE STORAGE SPACE

 and COSTS increase by 18%even when modifying the key assumptions.

FOR GREENHOUSE GAS EMISSIONS,

the sensitivity analysis revealed that there is no significant difference between the two packaging solutions to favour one over the other.

Conclusions and key take-aways

The two case studies highlight the many important impacts that would take place should regulation force the market to shift from corrugated cardboard to reusable crates.

These consequences include:

Implications for policy

Reuse is not always better than single use.
 The effect of reusable packaging on forward flow is critical.

Without Europe-wide and cross-product standardisation, reuse will increase the environmental footprint of packaging instead of decreasing it.

Find out more on the Deloitte page about the case studies.
Read the full report here. Check our dedicated webpage here.

The Federation of Corrugated Board Manufacturers

General information and requests for publications: info@fefco.org

UNINTENDED
CONSEOUENCES OF REUSE

WATCH OUR VIDEO

[^0]: *Disclaimer of Deloitte Consulting \& Advisory BV: This document and the information contained herein is provided "as is," and we (including our subcontractors and suppliers) make no express or implied representations or warranties regarding this document or the information. Your use of this document and information is at your own risk. You assume full responsibility and risk of loss resulting from the use of this document or information. We (including our subcontractors and suppliers) will not be liable for any special, indirect, incidental, consequential, or punitive damages or any other damages whatsoever, whether in an action of contract, statute, tort (including, without limitation, negligence), or otherwise, relating to the use of this document or information.

